close

一、內核如何實現信號的捕捉

如果信號的處理動作是用戶自定義函數,在信號遞達時就調用這個函數,這稱為捕捉信號。由於信號處理函數的代碼是在用戶空間的,處理過程比較復雜,舉例如下:
1.
用戶程序注冊了SIGQUIT信號的處理函數sighandler
2.
當前正在執行main函數,這時發生中斷或異常切換到內核態。
3.
在中斷處理完畢后要返回用戶態的main函數之前檢查到有信號SIGQUIT遞達。
4.
內核決定返回用戶態后不是恢復main函數的上下文繼續執行,而是執行sighandler函數,sighandlermain函數使用不衕的堆棧空間,它們之間不存在調用和被調用的關系,是兩個獨立的控制流程。



1
2

 

(By default,  the  signal  handler  is invoked on the normal process stack.  It is possible to arrange that the signal handler
 uses an alternate stack; see sigaltstack(2for a discussion of how to do this and when it might be useful.)

 


5. sighandler
函數返回后自動執行特殊的系統調用sigreturn再次進入內核態。
6.
如果沒有新的信號要遞達,這次再返回用戶態就是恢復main函數的上下文繼續執行了。

上圖出自ULK



二、sigaction函數

#include <signal.h>

int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);


sigaction
函數可以讀取和修改與指定信號相關聯的處理動作。調用成功則返回0,出錯則返回-1signo是指定信號的編號。若act指針非空, 則根據act修改該信號的處理動作。若oact指針非空,則通過oact傳出該信號原來的處理動作。actoact指向sigaction結搆體:  struct sigaction {
               void     (*sa_handler)(int);
               void     (*sa_sigaction)(int, siginfo_t *, void *);
               sigset_t   sa_mask;
               int        sa_flags;
               void     (*sa_restorer)(void);
           };



sa_handler 賦值為常數SIG_IGN傳給sigaction表示忽略信號,賦值為常數SIG_DFL表示執行系統默認動作,賦值為一個函數指針表示用自定義函數捕捉 信號,或者說向內核注冊了一個信號處理函數,該函數返回值為void,可以帶一個int參數,通過參數可以得知當前信號的編號,這樣就可以用衕一個函數處 理多種信號。顯然,這也是一個回調函數,不是被main函數調用,而是被系統所調用。
當某個信號的處理函數被調用時,內核自動將當前信號加入進程的信號屏蔽字,當信號處理函數返 回時自動恢復原來的信號屏蔽字,這樣就保證了在處理某個信號時,如果這種信號再次產生,那么它會被阻塞到當前處理結束為止。如果在調用信號處理函數時,除 了當前信號被自動屏蔽之外,還希望自動屏蔽另外一些信號,則用sa_mask字段說明這些需要額外屏蔽的信號,當信號處理函數返回時自動恢復原來的信號屏 蔽字。



需要注意的是sa_restorer 參數已經廢棄不用,sa_handler主要用於不可靠信號(實時信號當然也可以,只是不能帶信息),sa_sigaction用於實時信號可以帶信息 (siginfo_t),兩者不能衕時出現。sa_flags有几個選項,比較重要的有兩個:SA_NODEFER SA_SIGINFO,當SA_NODEFER設置時在信號處理函數執行期間不會屏蔽當前信號;當SA_SIGINFO設置時與sa_sigaction 搭配出現,sa_sigaction函數的第一個參數與sa_handler一樣表示當前信號的編號,第二個參數是一個siginfo_t 結搆體,第三個參數一般不用。當使用sa_handlersa_flags設置為0即可。



 siginfo_t {
               int      si_signo;    /* Signal number */
               int      si_errno;    /* An errno value */
               int      si_code;     /* Signal code */
               int      si_trapno;   /* Trap number that caused
                                        hardware-generated signal
                                        (unused on most architectures) */
               pid_t    si_pid;      /* Sending process ID */
               uid_t    si_uid;      /* Real user ID of sending process */
               int      si_status;   /* Exit value or signal */
               clock_t  si_utime;    /* User time consumed */
               clock_t  si_stime;    /* System time consumed */
               sigval_t si_value;    /* Signal value */
               int      si_int;      /* POSIX.1b signal */
               void    *si_ptr;      /* POSIX.1b signal */
               int      si_overrun;  /* Timer overrun count; POSIX.1b timers */
               int      si_timerid;  /* Timer ID; POSIX.1b timers */
               void    *si_addr;     /* Memory location which caused fault */
               long     si_band;     /* Band event (was int in
                                        glibc 2.3.2 and earlier) */
               int      si_fd;       /* File descriptor */
               short    si_addr_lsb; /* Least significant bit of address
                                        (since kernel 2.6.32) */
           }



需要注意的是并不是所有成員都在所有信號中存在定義,有些成員是共用體,讀取的時候需要讀取對某個信號來說恰當的有定義的部分。



下面用sigaction函數舉個小例子:

 C++ Code 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/

#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>

#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

void handler(int sig);


int main(int argc, char *argv[])
{
    struct sigaction act;
    act.sa_handler = handler;
    sigemptyset(&act.sa_mask);
    act.sa_flags = 0;

    if (sigaction(SIGINT, &act, NULL) < 0)
        ERR_EXIT("sigaction error");

    for (; ;)
        pause();

    return 0;

}

void handler(int sig)
{
    printf("rev sig=%d\n", sig);
}

simba@ubuntu:~/Documents/code/linux_programming/APUE/signal$ ./sigaction 
^Crev sig=2
^Crev sig=2
^Crev sig=2

...........................

即按下ctrl+c 會一直產生信號而被處理打印recv語句。



其實我們在前面文章說過的signal 函數是調用sigaction 實現的,而sigaction函數底層是調用 do_sigaction() 函數實現的。可以自己實現一個my_signal 函數,如下:

 C++ Code 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

 

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/

#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>

#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

void handler(int sig);
/* 
系統調用signal()實際上調用了sigaction() */
__sighandler_t my_signal(int sig, __sighandler_t handler);

int main(int argc, char *argv[])
{
    my_signal(SIGINT, handler);

    for (; ;)
        pause();

    return 0;

}

__sighandler_t my_signal(int sig, __sighandler_t handler)
{
    struct sigaction act;
    struct sigaction oldact;
    act.sa_handler = handler;
    sigemptyset(&act.sa_mask);
    act.sa_flags = 0;

    if (sigaction(sig, &act, &oldact) < 0)
        return SIG_ERR;

    return oldact.sa_handler; // 
返回先前的處理函數指針
}

void handler(int sig)
{
    printf("rev sig=%d\n", sig);
}

輸出測試是一樣的,需要注意的是 signal函數成功返回先前的handler,失敗返回SIG_ERR。而sigaction 是通過oact 參數返回先前的handler,成功返回0,失敗返回-1



下面再舉個小例子說明sa_mask 的作用:

 C++ Code 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

 

/*************************************************************************
    > File Name: process_.c
    > Author: Simba
    > Mail: dameng34@163.com
    > Created Time: Sat 23 Feb 2013 02:34:02 PM CST
 ************************************************************************/

#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h>

#define ERR_EXIT(m) \
    do { \
        perror(m); \
        exit(EXIT_FAILURE); \
    } while(0)

void handler(int sig);


int main(int argc, char *argv[])
{
    struct sigaction act;
    act.sa_handler = handler;
    sigemptyset(&act.sa_mask);
    sigaddset(&act.sa_mask, SIGQUIT); // 
在信號處理函數執行期間屏蔽SIGQUIT信號,完畢后會抵達
    /* 
注意sigprocmask中屏蔽的信號是一直不能抵達的,除非解除了阻塞*/
    act.sa_flags = 0;

    if (sigaction(SIGINT, &act, NULL) < 0)
        ERR_EXIT("sigaction error");

    for (; ;)
        pause();

    return 0;

}

void handler(int sig)
{
    printf("rev sig=%d\n", sig);
    sleep(5);
}

先按下ctrl+c ,然后馬上ctrl+\,程序是不會馬上終止的,即等到handler處理完畢SIGQUIT信號才會抵達。

simba@ubuntu:~/Documents/code/linux_programming/APUE/signal$ ./sa_mask 
^Crev sig=2
^\

5s過后接著才輸出Quit (core dumped),即在信號處理函數執行期間sa_mask集合中的信號被阻塞直到運行完畢。



sa_flags sa_sigaction 參數的示例看这里



在多線程環境下,編寫信號處理函數需要安全地處理,可以參考這篇文章:

Linux 多線程應用中如何編寫安全的信號處理函數》

http://www.ibm.com/developerworks/cn/linux/l-cn-signalsec/

 

原文網址

http://blog.csdn.net/jnu_simba/article/details/8947410

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 立你斯 的頭像
    立你斯

    立你斯學習記錄

    立你斯 發表在 痞客邦 留言(0) 人氣()